咨询电话:010-52882318

功率稳压逆变电源电路设计—电路图天天读(263)

时间: 2024-08-09 12:40:43 |   作者: 可控硅触发器系列

产品详情

  ,具有工作稳定可靠、输入功率因数高、输出精 度高、波形失真度小、效率高的优点。

  采用 PWM 稳压系统,可使启动瞬间降压幅度明显减小。无论电风扇还是电冰箱,应用逆变电源供电时,均应在逆变器输出端增设图 1 中的 LC 滤波器,以改善波形,避免脉冲上升沿尖峰击穿电机绕组。

  采用双极型开关管的逆变器,基极驱动电流基本上为开关电流的 1/ ,因此大电流开关电路一定要采用多级放大,不仅使电路复杂化,可靠性也变差而且随着输出功 率的增大,开关管驱动电流需大于集电极电流的 1/, 致使普通驱动 IC 无法直接驱动。 虽说采用多级放大能够达到目的, 但是波形失真却明显增大, 因此导致开 关管的导通/截止损耗也增大。 目前解决大功率逆变电源及 UPS 的驱动方案,大多采用 MOSFET 管作开关器件。

  近年来, 随着 MOSFET 生产的基本工艺的改进, 各种开关电源、 变换器都广泛采用 MOSFET 管作为高频高压开关电路, 但是, 专用于驱动 MOSFET 管的集成电 路国内极少见。 驱动 MOSFET管的要求是,低输出阻抗,内设灌电流驱动电路。所以,普通用于双极型开关管的驱动 IC不能直接用于驱动场效应管。

  目前就全球范围来说,可直接驱动 MOSFET 管的 IC 品种仍不多,单端驱动器常用的 是UC3842 系列, 而用于推挽电路双端驱动器有 SG3525A(驱动 N 沟道场效应管)、 SG3527A(驱动 P 沟道场效应管) 和 SG3526N(驱动 N 沟道场效应管)。然而在开关电源加快速度进行发展的近 40年中,毕竟有了一大批 优秀的、功能完善的双端输出驱动 IC.同时随着 MOSFET 管应用普及,又开发了不少新电路,可将其用于驱动 MOSFET 管,解决 MOSFET 的驱动无非 包括两个内容: 一是降低驱动 IC 的输出阻抗; 二是增设 MOSFET 管的灌电流通路。 为此, 不妨回顾 SG3525A、SG3527A、SG3526N 以及单 端驱动器 UC3842 系列的驱动级。

  图 2a 为上述 IC 的驱动输出电路(以其中一路输出为例)。振荡器的输出脉冲经或非门,将脉冲上升沿和下降沿输出两路时序不同的驱动脉冲。在脉冲正程期 间,Q1 导通,Q2 截止,Q1 发射极输出的正向脉冲, 向开关管栅极电容充电, 使漏-源极很快达到导通阈值。 当正程脉冲过后, 若开关管栅-源极间充电电荷不 能快速放完, 将使漏源极驱动脉冲不能立即截止。为此,Q1 截止后,或非门立即使 Q2 导通,为栅源极电容放电提供通路。此驱动方式中,Q1 提供驱动电 流,Q2 提供灌电流(即放电电流)。Q1 为发射极输出器,其本身就具有极低的输出阻抗。

  为了达到上述要求,将普通用于双极型开关管驱动输出接入图 2b 的外设驱动电路,也能够完全满足 MOSFET 管的驱动要求。 设计驱动双极型开关管的集成电路, 常 采用双端图腾柱式输出两路脉冲,即两路输出脉冲极性是相同的,以驱动推挽的两只 NPN 型三极管。为了让推挽两管轮流导通,两路驱动脉冲的时间次序不同。如 果第一路输出正脉冲,经截止后,过一死区时间, 第二路方开始输出。 两路驱动级采用双极型三极管集射极开路输出, 以便于取得不同的脉冲极性,用于驱动 NPN 型或 PNP 型开关管。

  前级驱动 IC 内部缓冲器的发射极,在负载电阻 R1 上建立未倒相的正极性驱动脉冲使三极管 Q 截止。在驱动脉冲上升沿开始,正极性脉冲通过二极管 D 加到 MOSFET 开关管栅-源极,对栅源极电容 CGS 充电,当充电电压达到开关管栅极电压阈值时,其漏源极导通。正脉冲持续期过后, IC 内部缓冲放大器发射极 电平为零, 输出端将有一段时间的死区。 此时,Q 的发射极带有 CGS 充电电压,因而 Q 导通,CGS 通过 Q 的 ec 极放电,Q 的集电极电流为灌电流通路。 R2 为 开关管的栅极电阻, 目的是避免开关管的栅极在 Q、 D 转换过程中悬空, 否则其近似无穷大的高输入阻抗极容易扰电平所击穿。 采用此方式利用普通双端输出集 成电路,驱动 MOSFET 开关管,可达到比较理想的效果。为降低导通 /截止损耗,D应选用快速开关二极管.Q 的集电极电流应根据开关管决定, 若为了更好的提高输 出功率, 每路输出采用多只 MOSFET 管并联应用,则应选择 ICM 足够大的灌流三极管和高速开关二极管。

  目前所有的双端输出驱动 IC 中, 可以说美国德州仪器公司开发的 TL494 功能最完善、 驱动能力最强,其两路时序不同的输出总电流为 SG3525 的两倍,达到 400mA.仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC 变换器、逆变器,几乎无一例外地采用 TL494.虽然 TL494 设计用于驱动双极型开关管,然而目前绝大部分采用 MOSFET 开关管的设备, 利用外设灌流电路,也广泛采用 TL494 。为此,本节中将详细的介绍 其功能及应用电路。其内部方框图如图 3 所示。其内部电路功能、特点及应用方法如下:

  A.内置 RC 定时电路设定频率的独立锯齿波振荡器 , 其振荡频率 fo(kHz)=1.2/R(k)。 C(F),其最高振荡频率可达 300kHz, 既能驱动双极性开关管,增设灌电流通路后,还能驱动MOSFET 开关管。

  B.内部设有比较器组成的死区时间控制电路, 用外加电压控制比较器的输出电平, 通过其输出电平使触发器翻转, 控制两路输出之间的死区时间。 当第 4 脚电平升高时, 死区时间增大。

  C.触发器的两路输出设有控制电路, 使 Q1、 Q2 既可输出双端时序不同的驱动脉冲, 驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。

  D.内部两组完全相同的误差放大器, 其同相输入端均被引出芯片外, 因此能自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。

  E.输出驱动电流单端达到 400mA, 能直接驱动峰值电流达 5A 的开关电路。双端输出脉冲峰值为 2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。

  电压不超过 VCC+0.3V.第 2、15 脚为误差放大器 A1、A2 的反相输入端。可接入误差检出的基准电压。 第 3 脚为误差放大器 A1、 A2 的输出端。 集成电路内部用于控制 PWM 比较器的同相输入端,当 A1、 A2 任一输出电压升高时,控制 PWM 比较器的输出脉宽减小。同时,该输出端还引出端外,以便与第 2、15 脚间接入 RC 频率校正电路和直接负反馈电路,一则 稳定误差放大器的增益,二则防止其高频自激。另外,第 3 脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。 第 4 脚为死区时间控制端。 当外加 1V 以下 的电压时,死区时间与外加电压成正比。如果电压超过 1V,内部比较器将关断触发器的输出脉冲。第 5脚为锯齿波振荡器外接定时电容端,第 6 脚为锯齿波振荡器 外接定时电阻端,通常用于驱动双极性三极管时需限制振荡频率小于 40kHz. 第 7 脚为接地端。第 8、11 脚为两路驱动放大器 NPN 管的集电极开路输出端。 当第 8、11 脚接 Vcc, 第 9、10 脚接入发射极负载电阻到地时,两路为正极性图腾柱式输出,用以驱动各种推挽开关电路。当第 8、11 脚接地时,两路为同 相位驱动脉冲输出。第 8、11 脚和 9、10 脚可直接并联,双端输出时最大驱动电

  流为 2×200mA, 并联运用时最大驱动电流为 400mA.第 14 脚为内部 基准电压精密稳压电路端。 输出 5V 0.25V 的基准电压, 最大负载电流为 10mA. 用于误差检出基准电压和控制模式的控制电压。TL494 的极限参数: 最高瞬间工作电压(12 脚)42V,最大输出电流 250mA,最高误差输入电压 Vcc+0.3V,测试/环境和温度45℃,最大允许功耗 1W,最高结温 150℃,使用温度范围 0~70 ℃,保存温度-65~+150 ℃。

  图 4 为外刊介绍的利用 TL494 组成的 400W 大功率稳压逆变器电路。它激式变换部分采用TL494, VT1、 VT2、 VD3、 VD4 构成灌电流驱动电 路, 驱动两路各两只 60V/30A 的 MOSFET开关管。 如需提高输出功率, 每路可采用 3~4 只开关管并联应用, 电路不变。

  编辑点评:由于本文中的交流稳流源实质上是一个电压型电流源, 即通过快速调节输出电压来实现输出稳流。因此,所描述的交流稳流逆变电源应用于低压电器长延时热脱扣试验,适用于对断路器、热继电器等低压电器作 长延时特性的校验和测试。

相关推荐